China Standard Oldham Type Coupling Gh-55X57cross Sliding Set Screw Coupling oldham coupling

Product Description

GH Oldham type coupling cross sliding set screw coupling


Description of
 GH Oldham type coupling cross sliding set screw coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GH Oldham type coupling cross sliding set screw coupling

  

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GH-16X18 4,5,6,6.35,7,8 16 18 7.1 11.6 3.55 M3 0.7
GH-20X25 5,6,6.35,7,8,9,9.525 20 25 9.1 12.7 4.55 M4 1.7
GH-25X28 5,6,6.35,8,9,9.525,10,11,12,14 25 28 11.7 16.65 5.58 M4 1.7
GH-32×33 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 33 14 19.5 7 M4 1.7
GH-40X35 8,9,9.525,10,11,12,12.7,14,14,16,17,18,19,20 40 35 15.5 18.4 7.75 M4 1.7
GH-45X46 8,9,9.525,10,11,12.7,14,15,16,17,18,19,20,22 45 46 21.5 18.4 9 M5 4
GH-50X38 10,12,12.7,14,15,16,17,18,19,20,22,24,25 50 38 16.5 15 8.25 M5 4
GH-55X57 10,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 27 17.5 10.5 M5 4
GH-63X47 14,15,16,17,18,19,20,22,24,25,28,30,32 63 47 21 17.5 10.5 M6 8.4
GH-70X77 16,17,18,19,20,22,24,25,28,30,32,38,40 70 77 36.5 25 13.5 M8 10.5

 

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GH-16X18 0.7 0.8 3 ±0.2 9000 30 3.3×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 6
GH-20X25 1.2 1.2 3 ±0.2 7000 58 1.1×10-6 18
GH-25X28 2 1.6 3 ±0.2 6000 130 3.1×10-6 25
GH-32×33 4.5 2 3 ±0.2 4800 270 9.6×10-6 44
GH-40X35 9 2.4 3 ±0.2 3600 520 2.3×10-5 81
GH-45X46 12 2.8 3 ±0.2 3500 560 3.8×10-5 136
GH-50X38 19 2.6 3 ±0.2 3000 800 1.8×10-4 142
GH-55X57 22 3.3 3 ±0.2 2800 795 8.0×10-4 255
GH-63X47 19 3 3 ±0.2 2500 1200 8.3×10-4 320
GH-70X77 56 3.8 3 ±0.2 2500 1260 3.9×10-4 445

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Different Sizes and Configurations of Oldham Couplings

Yes, Oldham couplings are available in various sizes and configurations to suit different applications and requirements. The sizes and configurations can vary based on factors such as torque capacity, shaft diameter, and overall dimensions. Some common variations include:

1. Shaft Diameters: Oldham couplings come in a range of shaft diameter options to accommodate different motor and shaft sizes. They can be found in standard metric and imperial sizes, making them compatible with various equipment and machinery.

2. Torque Capacity: Oldham couplings are designed to handle different torque capacities. The torque capacity of a coupling depends on its size, materials used, and overall construction. High-performance couplings can transmit higher torques, while smaller couplings may be suitable for lighter applications.

3. Coupling Length: The length of the coupling can vary, and some designs allow for compact installations in confined spaces, while others may have longer lengths for specific applications.

4. Materials: Oldham couplings are manufactured using various materials such as aluminum, stainless steel, and composite materials. The choice of material depends on factors like the operating environment, chemical resistance, and desired performance characteristics.

5. Spacer Type: Oldham couplings may have different spacer designs, including straight-spacer and step-spacer configurations. The choice of spacer type can affect the overall stiffness and misalignment capabilities of the coupling.

6. Hub Style: Oldham couplings come with different hub styles, such as set screw, clamp, or compression-style hubs, to accommodate various shaft attachment methods and ease of installation.

7. Backlash: Couplings may have different backlash characteristics, allowing for minimal angular play between the hubs to reduce vibration and shock loads.

Manufacturers of Oldham couplings typically provide detailed specifications and product catalogs that outline the available sizes and configurations. It’s essential to select the right coupling size and configuration that matches the requirements of the specific application to ensure optimal performance and longevity.

oldham coupling

Can an Oldham Coupling be Used in Both Horizontal and Vertical Shaft Orientations?

Yes, an Oldham coupling can be used in both horizontal and vertical shaft orientations. The design of the Oldham coupling allows it to accommodate misalignment between shafts in multiple directions, including axial, angular, and parallel misalignments.

In horizontal shaft arrangements, the Oldham coupling can handle misalignment between two parallel shafts while transmitting torque smoothly and efficiently. It is commonly used in various power transmission applications where two shafts are relatively close together and require a reliable coupling to compensate for misalignment.

In vertical shaft orientations, the Oldham coupling can handle axial misalignment, which is the misalignment between the rotational axes of the two shafts. This makes it suitable for applications where the connected shafts are not perfectly aligned due to gravitational forces or other factors.

The Oldham coupling’s ability to accommodate misalignment in both horizontal and vertical shaft orientations makes it a versatile choice for a wide range of mechanical systems, including pumps, compressors, conveyor systems, and more. However, it is essential to ensure proper installation and maintenance to maximize the coupling’s performance and service life in any shaft orientation.

oldham coupling

How an Oldham Coupling Accommodates Misalignment Between Shafts

An Oldham coupling accommodates misalignment between shafts through its unique design, which consists of three main components:

  1. Two Hubs: Each hub is attached to the shaft of the connected equipment. The hubs have a series of slots around their circumference.
  2. Middle Block: The middle block fits between the two hubs and has perpendicular slots on its inner diameter. It connects the two hubs while allowing relative movement between them.

When the shafts experience angular or axial misalignment, the middle block slides within the slots of both hubs. The perpendicular slots on the middle block engage with the slots on the hubs, creating a parallelogram linkage.

This parallelogram linkage allows the Oldham coupling to compensate for angular misalignment by enabling the hubs to rotate independently about their own axes. The sliding action of the middle block accommodates axial misalignment by allowing the hubs to move slightly closer or farther apart.

The use of sliding contact instead of direct physical contact between the hubs minimizes friction, backlash, and wear, making the Oldham coupling an efficient and reliable method for transmitting torque while accommodating misalignment.

Overall, the Oldham coupling’s ability to handle both angular and axial misalignment ensures smooth and precise torque transmission between shafts, reducing stress on connected equipment and extending the lifespan of mechanical components.

China Standard Oldham Type Coupling Gh-55X57cross Sliding Set Screw Coupling  oldham couplingChina Standard Oldham Type Coupling Gh-55X57cross Sliding Set Screw Coupling  oldham coupling
editor by CX 2024-05-06

Leave a Reply

Your email address will not be published. Required fields are marked *