China manufacturer Flexible Oldham Coupling Set Screw/Clamp Type Shaft Coupling oldham coupling

Product Description

Flexible Oldham Coupling Set Screw/Clamp Type Shaft Coupling for Servo Motor

Description of Flexible Oldham Coupling Set Screw/Clamp Type Shaft Coupling for Servo Motor

1.Zero rotation gap
2. High torque rigidity
3. Allow a large amount of deviation adjustment
4. Vibration absorption
5. Good electrical insulation
6. Simple structure and easy installation
 

Parameter of Flexible Oldham Coupling Set Screw/Clamp Type Shaft Coupling for Servo Motor

Dimension

Item Bore Size D L L1/L2 F G M Torque
N.m
d1 d2
Min Max Min Max
JH16 3 6.35 3 6.35 16 18 7 3.5 M3 0.7
JH16C 4 6 4 6 29 12.5 3.5 M2.5 1.5
JH20 4 8 4 8 20 23 9 4.5 M4 1.7
JH20C 4 8 4 8 33 14 3.5 M3 1.5
JH25 5 12 5 12 25 28 11 5.5 M5 4
JH25C 5 12 5 12 39 16.5 3.5 M3 1.5
JH32 5 16 5 16 32 33 13 6.5 M6 7
JH32C 5 16 5 16 45 19 4.5 M4 2.5
JH40 8 20 8 20 40 35 14 7 M6 7
JH40C 8 20 8 20 50 23 7 M5 4
JH50 12 24 12 24 50 38 17 8.5 M8 15
JH50C 12 24 12 24 58 27 8 M6 8
JH63 14 30 14 30 63 47 21 10.5 M10 8
JH63C 14 30 14 30 71 33 10 M8 16

 Specification

Item Rated Torque
(Nm)
Max. Torque
(Nm)
Allowable
Speed
(min-1)
Torsional
Stiffness
N.m/rad
Moment of
Inertia
10-6kgm2
Iateral
(mm)
Angular
(.)
Net weight
(g)
JH16 0.7 1.4 12000 31 0.32 1 3 7
JH16C 0.58 12
JH20 1.2 2.4 10000 60 1 1.5 3 14
JH20C 1.5 19
JH25 2 4 8000 140 3 2 3 27
JH25C 4.4 36
JH32 4.5 9 7000 280 9.5 2.5 3 50
JH32C 14 69
JH40 9 18 4800 540 23 3 3 80
JH40C 41 130
JH50 18 36 3000 820 67 3.5 3 150
JH50C 120 230
JH63 36 72 2800 1900 220 4 3 300
JH63C 370 450

Order Example

Item D C d1 d2
JH 16 Clamp Type 3 3

                 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Different Sizes and Configurations of Oldham Couplings

Yes, Oldham couplings are available in various sizes and configurations to suit different applications and requirements. The sizes and configurations can vary based on factors such as torque capacity, shaft diameter, and overall dimensions. Some common variations include:

1. Shaft Diameters: Oldham couplings come in a range of shaft diameter options to accommodate different motor and shaft sizes. They can be found in standard metric and imperial sizes, making them compatible with various equipment and machinery.

2. Torque Capacity: Oldham couplings are designed to handle different torque capacities. The torque capacity of a coupling depends on its size, materials used, and overall construction. High-performance couplings can transmit higher torques, while smaller couplings may be suitable for lighter applications.

3. Coupling Length: The length of the coupling can vary, and some designs allow for compact installations in confined spaces, while others may have longer lengths for specific applications.

4. Materials: Oldham couplings are manufactured using various materials such as aluminum, stainless steel, and composite materials. The choice of material depends on factors like the operating environment, chemical resistance, and desired performance characteristics.

5. Spacer Type: Oldham couplings may have different spacer designs, including straight-spacer and step-spacer configurations. The choice of spacer type can affect the overall stiffness and misalignment capabilities of the coupling.

6. Hub Style: Oldham couplings come with different hub styles, such as set screw, clamp, or compression-style hubs, to accommodate various shaft attachment methods and ease of installation.

7. Backlash: Couplings may have different backlash characteristics, allowing for minimal angular play between the hubs to reduce vibration and shock loads.

Manufacturers of Oldham couplings typically provide detailed specifications and product catalogs that outline the available sizes and configurations. It’s essential to select the right coupling size and configuration that matches the requirements of the specific application to ensure optimal performance and longevity.

oldham coupling

Differences Between Oldham Couplings and Other Types of Flexible Couplings

Oldham couplings are a type of flexible coupling used in mechanical systems to transmit torque between two shafts. Here are some key differences between Oldham couplings and other types of flexible couplings:

  • Mechanism of Torque Transmission: Oldham couplings use a sliding motion between the center disc and the hubs to transmit torque. The center disc has slots that engage with pins on the hubs, allowing for torque transmission while accommodating misalignment. In contrast, other flexible couplings, such as jaw couplings or beam couplings, typically use elastic materials or flexible elements like rubber or springs to transmit torque.
  • Misalignment Compensation: Oldham couplings are specifically designed to handle angular misalignment between shafts. They can accommodate parallel misalignment to a limited extent but are not well-suited for axial misalignment. Other flexible couplings like beam couplings or bellows couplings may offer more comprehensive misalignment compensation, including axial misalignment.
  • Backlash: Oldham couplings have a small amount of backlash due to the clearance between the center disc and the hubs. This backlash can be beneficial in some applications to reduce shock loads and vibrations. However, other flexible couplings like beam couplings or jaw couplings may have minimal or zero backlash.
  • Construction and Materials: Oldham couplings are typically made of materials like aluminum for the hubs and center disc, and acetal or other plastics for the center disc’s sliding parts. Other flexible couplings come in various materials, including aluminum, stainless steel, elastomers, and composite materials, depending on the application’s requirements.
  • Operating Speed: Oldham couplings are suitable for moderate to high rotational speeds, but their speed limitations depend on the material and design. Some other flexible couplings, such as bellows couplings, can handle even higher speeds due to their construction.
  • Applications: Oldham couplings are commonly used in applications that require moderate torque transmission and angular misalignment compensation, such as pumps, packaging machines, and automation equipment. Other flexible couplings are used in a wide range of applications, including motion control systems, robotics, aerospace, and automotive industries, where specific coupling characteristics are needed.

Choosing the right flexible coupling depends on the specific requirements of the application, including torque, misalignment, speed, space constraints, and environmental conditions. Engineers and designers should carefully consider these factors to select the most appropriate coupling for their mechanical system.

oldham coupling

Advantages of Using an Oldham Coupling Compared to Other Types of Couplings

An Oldham coupling offers several advantages over other types of couplings, making it a preferred choice in certain applications:

  • Misalignment Compensation: The Oldham coupling can handle both angular and axial misalignments between shafts. It allows for up to a few degrees of misalignment while transmitting torque smoothly, reducing the risk of premature wear and failure caused by misalignment.
  • No Backlash: Unlike some other flexible couplings, the Oldham coupling has minimal backlash. This means there is little to no play or clearance between the coupling components during rotation, ensuring precise torque transmission and positioning in high-precision applications.
  • Vibration and Noise Damping: The sliding action of the middle block in the coupling helps to isolate the shafts from each other, reducing vibrations and noise during operation. This feature is beneficial in applications where vibration dampening is critical to equipment performance and longevity.
  • High Torque Transmission: Oldham couplings can handle relatively high torque transmission, making them suitable for applications with moderate to high torque requirements.
  • Low Maintenance: Due to its design, the Oldham coupling experiences minimal wear during operation, leading to lower maintenance requirements and longer service life.
  • Easy Installation: Oldham couplings are relatively easy to install and remove, simplifying maintenance and replacement procedures.
  • Electrically Insulating: Some Oldham couplings are available with non-conductive materials, providing electrical isolation between shafts, which is essential in certain applications.
  • Cost-Effective: Compared to other high-performance couplings, Oldham couplings are often more cost-effective, providing reliable performance without breaking the budget.

Overall, the Oldham coupling is an excellent choice in applications where misalignment compensation, precision torque transmission, vibration dampening, and low maintenance are critical factors for successful operation. Its unique design and features make it suitable for various industrial and automation systems, contributing to smoother and more efficient mechanical power transmission.

China manufacturer Flexible Oldham Coupling Set Screw/Clamp Type Shaft Coupling  oldham couplingChina manufacturer Flexible Oldham Coupling Set Screw/Clamp Type Shaft Coupling  oldham coupling
editor by CX 2024-05-07

Leave a Reply

Your email address will not be published. Required fields are marked *